Clinical Impact of Interventricular Dyssynchrony in Repaired Tetralogy of Fallot: Myocardial Strain Analysis Using Semi-automatic Tracking of Cine Magnetic Resonance Imaging

Masateru Kawakubo, PhD1, Yuzo Yamasaki, MD2, Ichiro Sakamoto, MD3, Kenichiro Yamamura, MD4, Michinobu Nagao, MD5

1) Department of Radiological Technology, Faculty of Fukuoka Medical Technology, Teikyo University, 2) Department of Clinical Radiology, Graduate School of Medical Sciences, Kyushu University, 3) Department of Cardiovascular medicine, Graduate School of Medical Sciences, Kyushu University, 4) Department of Pediatrics, Graduate School of Medical Sciences, Kyushu University, 5) Department of Molecular Imaging & Diagnosis, Graduate School of Medical Sciences, Kyushu University

Abstract

Background: The interventricular dyssynchrony (IVD) is one of important functional parameters for patients with adult congenital heart disease (ACHD). In this study, we proposed semi-automatic myocardial strain analysis using 4-chamber (4CH) cine magnetic resonance imaging (MRI) to calculate IVD, and investigated the clinical impact of IVD in patients with repaired tetralogy of Fallot (TOF).

Methods: Data of cardiac MRI with 3-Teslar in 30 patients with repaired TOF was retrospectively analyzed. The longitudinal strains of biventricular free walls in the 4CH cine MRI were calculated using semi-automatic strain analysis. IVD was defined as a delay duration between peak times of longitudinal strain for right and left ventricles. Pulmonary regurgitant fraction (PRF, %) was derived from phase-contrast MRI. Comparison of IVD between repaired TOF patients with PRF of <30% and >30% was analyzed by Wilcoxon rank-sum test. Receiver-operating-characteristic (ROC) analysis was performed to determine the optimal cutoff of IVD for differentiating patients with PRF >30%.

Results: IVD was significantly greater for patients with PRF >30% than those with PRF <30% (63.7 ± 31.0 ms vs. 32.4 ± 23.2 ms, p = 0.004). ROC analysis revealed optimal cutoff IVD of 45.8 ms for differentiating patients with PRF >30% with C-statistics of 0.83, a sensitivity of 86%, and a specificity 70%.

Conclusions: IVD obtained from semi-automatic myocardial strain analysis of cine MR imaging is related to the severity of pulmonary regurgitation in repaired TOF, and has a clinical impact on determination of the treatment strategy.

Key words: repaired tetralogy of Fallot, cardiac magnetic resonance imaging, interventricular dyssynchrony, myocardial strain

Introduction

Improvement of surgical care for congenital heart disease leads to a growing number of patients with adult congenital heart disease (ACHD) 1-3. Patients with ACHD often have interventricular dyssynchrony (IVD) due to right ventricular (RV) volume or pressure overload 4,5. Although the impact of left ventricular (LV) dyssynchrony in ACHD patients has already been investigated 6-8, the impact of IVD has not been fully investigated.

We previously reported that longitudinal strain analysis using 4-chamber (4CH) cine magnetic resonance imaging (MRI) could predict the response to cardiac resynchronization therapy in advanced heart failure 9. This method evaluates
cardiac dyssynchrony by manual measurement of
the lengths of the LV and RV free wall through a
cardiac cycle. In another study, an MRI feature
tracking technique that can extract cardiac
contours semi-automatically and accurately \(^{10,11}\)
is applied for longitudinal strain analysis using
4CH cine MRI \(^{12}\). The purpose of this study is to
quantify IVD using this new semi-automatic
method and to investigate the clinical impact of
IVD in patients with repaired tetralogy of Fallot
(TOF).

Materials and Methods

Patients

The study protocol was reviewed and approved
by the institutional review board, and written
informed consent was obtained from all patients.

Thirty consecutive patients with repaired TOF
who underwent cardiac MRI were retrospectively
enrolled between January and December 2014. In
addition, 5 patients who had normal cardiac
function and no prior cardiac disease were
enrolled as controls. All patients had sinus
rhythm on electrocardiography (ECG). Table 1
shows clinical characteristics and ventricular
function.

<table>
<thead>
<tr>
<th>Table 1 Patients Characteristics</th>
<th>Repaired TOF (n = 30)</th>
<th>Control (n = 5)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Clinical characteristics</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>30 ± 12</td>
<td>65 ± 5</td>
</tr>
<tr>
<td>Female</td>
<td>14</td>
<td>3</td>
</tr>
<tr>
<td>Heart rate (beat / min)</td>
<td>69 ± 12</td>
<td>59 ± 7</td>
</tr>
<tr>
<td>QRS duration (ms)</td>
<td>131 ± 35</td>
<td>87 ± 9</td>
</tr>
<tr>
<td>CMR measurements</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LV function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDV (ml)</td>
<td>136 ± 38</td>
<td>122 ± 21</td>
</tr>
<tr>
<td>ESV (ml)</td>
<td>64 ± 19</td>
<td>47 ± 18</td>
</tr>
<tr>
<td>EF (%)</td>
<td>52 ± 6</td>
<td>63 ± 10</td>
</tr>
<tr>
<td>RV function</td>
<td></td>
<td></td>
</tr>
<tr>
<td>EDV (ml)</td>
<td>217 ± 86</td>
<td></td>
</tr>
<tr>
<td>ESV (ml)</td>
<td>126 ± 71</td>
<td></td>
</tr>
<tr>
<td>EF (%)</td>
<td>44 ± 9</td>
<td></td>
</tr>
</tbody>
</table>

Baseline characteristics of all patients are shown.
CMR: cardiac magnetic resonance, LV: left ventricular,
RV: right ventricular, EDV: end diastolic volume,
ESV: end systolic volume, EF: ejection fraction

MRI protocol

All MRI examinations were performed in a
supine position using a 3.0T system (Achieva
3.0T TX; Philips Medical Systems, Best, the
Netherlands) with a 32-element cardiac coil using
ECG gating. The 4CH cine images of 20 cardiac
phases / RR intervals on the ECG were obtained
by steady state free precession (SSFP) sequences.
The imaging protocol was as follows: TR = 2.9 ms,
TE = 1.5 ms, flip angle = 45°, slice thickness = 8
mm, field of view 380 mm × 380 mm, acquisition
matrix = 176 × 162, and reconstruction matrix =
512 × 512. Phase contrast (PC) MRI with a flow-
sensitive gradient echo sequence was obtained for
30 cardiac phases. The imaging protocol was as
follows: TR = 6.5 ms, TE = 4.0 ms, flip angle = 10°,
slice thickness = 3 mm, field of view 320 mm × 300
mm, acquisition matrix = 128 × 256, and velocity
encoded value (VENC) set to 100 - 250 cm / s.

Cine images were analyzed using commercial
software (Extended Work space, Philips
Healthcare, Best, The Netherlands). The LV and
RV volumes were measured at end-diastole and
end-systole by manually tracing endocardial
contours from base to apex on the short-axis cine
MRI. The LV ejection fraction (LVEF) was
calculated from LV end-diastolic and systolic
volumes. The RV ejection fraction (RVEF) was
similarly obtained with transverse cine MRI.

In patients with repaired TOF, the pulmonary
regurgitant fraction (PRF, %) was defined as the
percentage of the retrograde to anterograde flow
for the main pulmonary artery, and was
calculated from time-flow curves derived from
phase-contrast MRI (Fig. 1).

Semi-automatic myocardial strain analysis

LV and RV free walls were semi-automatically
delineated as a polygonal line with control points.
First, the LV and RV free walls were manually
delineated on the 4CH MRI only at end-diastole
(Fig. 2a). Second, the control points were
automatically set on the delineated line on the
ventricular free wall at each interval of 25 pixels
(Fig. 2b). Third, control points were propagated
for a cardiac cycle with a local template matching
technique similar to the MRI feature tracking
technique (Fig. 2c). The square template size and
square search area were configured for 25 × 25
Pulmonary regurgitant fraction (PRF, %) was calculated from PC MRI as the percentage of the retrograde flow volume to anterograde flow volume for main pulmonary artery.

Fig. 1 Pulmonary regurgitant fraction in repaired TOF

Pulmonary regurgitant fraction (PRF, %) was calculated from PC MRI as the percentage of the retrograde flow volume to anterograde flow volume for main pulmonary artery.

Fig. 2 Semi-automatic myocardial strain analysis

a. First-step, ventricular free walls were manually delineated (LV: solid line, RV: dashed line) only at the end-diastole 4CH MRI.

b. Second-step, the control points were automatically set on the delineated line on ventricular free wall at each interval of 25 pixels.

c. Third-step, control points were propagated for a cardiac cycle with the local template matching technique (upper to lower). The square template size and square search area were configured for 25 × 25 pixels in size.

d. Final-step, the longitudinal lengths of ventricular free walls were calculated as the summation of the distances of each point throughout a cardiac cycle.

The longitudinal strain was calculated as the percentage of the differences between the longitudinal length at each phase and end-diastole to the longitudinal length at end-diastole. The IVD (ms) was defined as the time delay between the peak times of longitudinal strain for LV to RV (Fig. 3).

Statistics

Continuous data are expressed as the means ± standard deviation (SD). Comparison of IVD between the two groups was analyzed by the Wilcoxon rank-sum test. Receiver-operating-characteristics (ROC) analysis was performed the optimal cutoff parameters for predicting repaired TOF patients with PRF of >30%. Correlations between IVD and right ventricular end-diastolic volume (RVEDV), and between IVD and QRS duration were analyzed using Pearson correlation coefficients in patients with repaired TOF, respectively. All statistical analyses were performed using SAS software for Windows (version 11, SAS Inc., Cary, NC, USA). All statistical tests were two-sided. A p value of < 0.05 was considered significant.

Results

IVD was significantly greater for patients with repaired TOF than controls (45.5 ± 31.6 ms vs. 9.4 ± 21.0 ms, \(p = 0.02 \)).

In patients with repaired TOF, PRF could not be calculated in 3 patients due to metallic artifact and post-operative changes. PRF for 27 patients was 32.6 ± 24.3 %. IVD was significantly greater for patients with PRF >30% (\(n = 13 \)) than patients with PRF <30% (\(n = 14 \)) (63.7 ± 31.0 ms vs. 32.4 ± 23.2 ms, \(p = 0.004 \)) (Fig. 4). ROC analysis revealed optimal cutoff IVD of 45.8 ms for differentiating patients with PRF >30% from patients with that <30% with C-statistics of 0.83, a sensitivity of 86%, and a specificity 70 %. A significant correlation between IVD and RVEDV (\(r = 0.47, p < 0.01 \)) were observed (Fig. 5). No significant correlation between the IVD and QRS duration was observed (\(r = 0.20 \)).
IVD was defined as a delay time between end-systolic times for biventricular free-walls.

IVD was significantly greater for patients with PRF >30% than those with PRF <30% (63.7 ± 31.0 ms vs. 32.4 ± 23.2 ms, p = 0.004).

Significantly correlation between IVD and RVEDV was observed (r = 0.47, P < 0.01).

Discussion

The present study proposed semi-automatic myocardial strain analysis of cine MRI to calculate IVD. In patients with repaired TOF, IVD was helpful for detecting of severe pulmonary regurgitation. PC MRI has a limitation in the calculations of PRF. Main pulmonary artery flow cannot be measured due to metallic artifact and post-operative changes in prior pulmonary artery flow replacement. Actually, PRF could not be measured in 3 patients with repaired TOF in this study. Tricuspid regurgitation (TR) caused by RV volume or pressure overload in repaired TOF might affect pulmonary artery flow. In the present study, both PRF and IVD tended to be greater in 5 patients with TR than those in 22 patients without TR (PRF: 41.8 ± 24.0 % vs. 30.5 ± 23.9 %, IVD: 65.5 ± 29.0 ms vs. 41.5 ± 30.5 ms). According to this result, IVD might be more progress in patients with TR than patients with only pulmonary regurgitation. IVD obtained from tagged MRI can detect the RV dysfunction in ACHD patients 4, and IVD obtained from echocardiography is significantly longer for repaired TOF patients than control 5. Our results completely agreed with these previous reports. Therefore, IVD is a candidate to determine the treatment strategy in repaired TOF, and is a helpful tool in routine cardiac MRI protocols without a special scan such as tagging MRI. As indicated in the results, no association between QRS duration and IVD suggests that prolonged QRS is not equal to the presence of mechanical dyssynchrony. Despite a high incidence of complete or incomplete right bundle branch block in patients with repaired TOF, the interval from QRS onset to rapid RV pressure upstroke (i.e., RV systolic time interval) was not prolonged 13. This is most probably the result of peripheral bundle branch block of the genesis of the QRS pattern by right ventricular hypertrophy. In ACHD, prolonged QRS complexes and RV apical site pacing tend to be associated with a greater risk of pacing-induced ventricular dysfunction 14. This is caused by the fact that prolonged QRS is not equal to a delay in RV contraction. Accordingly, IVD might reflect more strictly a delay in RV contraction than QRS duration.

Tagged MRI has generally been used in
myocardial strain analysis. However, tagged MR imaging has restrictions to appending tags to the RV because of the complex RV structure in ACHD. Our semi-automatic myocardial strain analysis is based on an algorithm with matching of the template image. Accordingly, our method is a simple and accurate method to quantify myocardial strain. This is a great advantage in the assessment of longitudinal RV function, compared with tagging MRI. Furthermore, this algorithm may possibly be applied to LV short axis or 2-chamber cine MRI. Additional strain parameters and geometric cardiac motion analysis are possible.

Limitation

Although our study was limited by small number of patients and controls, our proposed method can be applied in various ACHD conditions, such as ventricular septal defect and complete and corrected transposition of the great arteries, and can be validated for many patients in a future study.

Conclusion

In conclusion, IVD obtained from semi-automatic myocardial strain analysis of cine MR imaging is related to the severity of pulmonary regurgitation in repaired TOF, and has a clinical impact on determination of the treatment strategy.

Reference